The base sets of quasi-primitive zero-symmetric sign pattern matrices with zero trace

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Primitive Zero-Symmetric Sign Pattern Matrices with Zero Diagonal Attaining the Maximum Base

A sign pattern matrix or sign pattern A is a matrix whose entries are from the set {1,−1, 0}. Notice that for a square sign pattern matrixA, in the computation of the signs of the entries of the power A, an ambiguous sign may arise when a positive sign is added to a negative sign. So a new symbol # was introduced in 1 to denote such an ambiguous sign. The powers of a square sign pattern have be...

متن کامل

Power Indices of Trace Zero Symmetric Boolean Matrices

The power index of a square Boolean matrix A is the least integer d such that A is a linear combination of previous nonnegative powers of A. We determine the maximum power indices for the class of n × n primitive symmetric Boolean matrices of trace zero, the class of n × n irreducible nonprimitive symmetric Boolean matrices, and the class of n×n reducible symmetric Boolean matrices of trace zer...

متن کامل

On Approximation Problems With Zero-Trace Matrices

12 because the conditions formulated in Corollary 1 are satissed for the problem (??). Therefore we have for every z 2 C jjjI + zBjjj k jjjIjjj k : Hence for every unitarily invariant norm we have by the properties of the unitarily invariant norms jjI + zBjj jjIjj: This completes the proof. 2 The above considerations imply that the characterization of a zero-trace matrix by means of the problem...

متن کامل

Numerical radius and zero pattern of matrices

Let A be an n n complex matrix and r be the maximum size of its principal submatrices with no o¤-diagonal zero entries. Suppose A has zero main diagonal and x is a unit n-vector. Then, letting kAk be the Frobenius norm of A; we show that jhAx;xij (1 1=2r 1=2n) kAk : This inequality is tight within an additive term O n 2 : If the matrix A is Hermitian, then jhAx;xij (1 1=r) kAk : This inequality...

متن کامل

Ela Constructions of Trace Zero Symmetric Stochastic Matrices for the Inverse Eigenvalue Problem∗

In the special case of where the spectrum σ = {λ1, λ2, λ3, 0, 0, . . . , 0} has at most three nonzero eigenvalues λ1, λ2, λ3 with λ1 ≥ 0 ≥ λ2 ≥ λ3, and λ1 + λ2 + λ3 = 0, the inverse eigenvalue problem for symmetric stochastic n × n matrices is solved. Constructions are provided for the appropriate matrices where they are readily available. It is shown that when n is odd it is not possible to re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2010

ISSN: 0024-3795

DOI: 10.1016/j.laa.2010.03.024